

EE 232 Lightwave Devices Lecture 2: Basic Concepts of Lasers

Instructor: Ming C. Wu

University of California, Berkeley Electrical Engineering and Computer Sciences Dept.

EE232 Lecture 2-1 Acknowledgment: some lecture materials are provided by Seth Fortuna Frof. Ming Wu

Basic Concept of Lasers

- Laser:
	- Light Amplification by Stimulated Emission of **Radiation**
- Basic elements:
	- Gain media
	- Optical cavity
- Threshold condition:
	- Bias point where laser starts to "lase"
	- Gain (nearly) equals loss

Gain Medium

 $G = \frac{\Delta I}{I} \frac{1}{I}$ *I* ΔL = Δ Δ

Gain is the fractional increase in light intensity per unit length (Units are cm^{-1} **)**

$$
(G - \alpha_i) = \frac{\Delta I}{I} \frac{1}{\Delta L}
$$

Internal loss (α_i) is the fractional decrease in light intensity per unit length (unrelated to fundamental absorption) (Units are cm^{-1})

Gain Medium (with internal loss)

$$
(G - \alpha_i) = \frac{\Delta I}{I} \frac{1}{\Delta L} \rightarrow \frac{dI}{dz} \frac{1}{I}
$$

$$
I(z) = I_0 e^{(G - \alpha_i)z}
$$

EE232 Lecture 2-5 Prof. Ming Wu

Gain with cavity

$$
1 = \frac{I(z = 0^+ + 2L)}{I(z = 0^+)} = e^{2(G_{th} - \alpha_i)L} R_2 R_1
$$

Threshold condition for self-sustaining oscillation

Round-trip gain

Gain with cavity

"Edge-Emitting" Semiconductor Lasers

 $g:$ gain coefficient $\text{[cm}^{-1}\text{]}$ Light ampflication: $I(z) = I_0 e^{\Gamma gz}$ $e^{\Gamma g L - a_i L} R_1 e^{\Gamma g L - a_i L} R_2 = 1$ T: confinement factor (fraction of energy in gain media) Threshold condition: Round-trip gain $= 1$ $g = g_{th} = \frac{\alpha_{th}}{\Gamma}$ $1^{11}2$ $1^{11}2$ α_i : intrinsic loss $\begin{array}{ccc} \{ & 1 \\ \end{array}$ $\begin{array}{ccc} \{ & 1 \\ \end{array}$ mirror loss $=\frac{1}{2\pi}$ $\ln\left|\frac{1}{2\pi}\right|$: (i.e., output light $\frac{1}{\pi}$ ln $\left(\frac{1}{\pi}\right)$ 2 $\frac{1}{\cdot}$) 1 n $\sum_{l=1}^{m}$ $\binom{m}{R_{l}}$ $i \left| \begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right|$ $\left| \begin{array}{cc} 1 & 1 \\ - & 1 \end{array} \right|$ L R_1R α $\begin{pmatrix} 1 \end{pmatrix}$ α _i + α _i $\frac{\lambda_i}{\Gamma}$ + $\frac{1}{2\Gamma L}$ ln $\left(\frac{1}{R_1R_2}\right)$ = $\frac{\lambda_i}{\Gamma}$ (1) $\left(\frac{}{R_1R_2}\right)$ ï $\left\{ \right.$ ï \lfloor

Modern Lasers

• **Optical cavity does not necessarily consist of mirrors**

Generic Description of Optical Cavity

Photon Lifetime and Spectral Width

Decay of optical energy when input is turned off (ring-down measurement):

/ $I(t) = I_0 e^{-t/\tau_p}$ for $t \ge 0$ Electrical (optical) field:

 $b_0 t \frac{-t}{2}$ $E(t) = E_0 e^{j\omega_0 t} e^{-t/2\tau_p}$ for $t \ge 0$

Frequency domain response (Fourier trans form):

 ω

EE232 Lecture 2-11 Prof. Ming Wu

Threshold Condition of Generic Lasers

 $Gain = Loss$ (rate of gain $=$ rate of loss) 1 *th p c* $g_{th}^C = \frac{1}{\tau_p} = \frac{\omega}{Q}$ τ $\Gamma g_{th}^{\quad c} = \frac{1}{\gamma} =$

$$
g_{th} = \frac{\omega n}{Q \Gamma c}
$$

Quantum efficiency:

$$
\eta = \frac{\alpha_m}{\alpha_m + \alpha_i} = \frac{Q_{rad}^{-1}}{Q_{rad}^{-1} + Q_{loss}^{-1}} = \frac{Q_{rad}^{-1}}{Q^{-1}}
$$

$$
\eta = \frac{Q}{Q_{rad}}
$$

L-I Curve of Semiconductor Lasers

- Distinctive threshold (at least in classical lasers)
- Semiconductor laser is a forwardbiased p-n junction, so mainly a current-biased device
- Threshold current :
	- Minimum current at which the laser starts to "lase"
- Quantum efficiency
	- "Differential" electrical-to-optical conversion efficiency, i.e., how many photons generated by injected electrons beyond threshold
- Wall-plug efficiency
	- Total electrical-to-optical conversion efficiency

Typical Q of Semiconductor Laser

Edge-emitting laser:

L = 100μm, $R = 30\%$, ω ~ 100*THz*, τ_{*p*} ~ 1*ps*, Q ~ 600

Vertical Cavity Surface-Emitting Laser (VCSEL) $L = 1 \mu m$, $R = 99\%$, $Q \sim 700$

Microdisk (Whispering Gallery Mode or WGM) Laser $Q \sim 1000$ (up to 10^{11} possible in low loss materials)

Photonic crystal laser: $Q \sim 1000$ (up to 10⁶ possible)

Metal cavity laser (plasmonic laser): $Q \sim 10$ to 100

EE232 Lecture 2-14 Prof. Ming Wu

Gain Cross-Section

Gain cross-section (instead of gain coefficient) is often used to measure the gain in gas or solid-state lasers:

 σ : [cm²]

Gain cross-section is related to gain by:

 $g = N\sigma$

where N is concentration of active molecules

For comparison, in semiconductor lasers:

 $g \sim 100$ ${\rm cm}^{-1}$ $N \sim 10^{18}$ cm⁻³ (typical electron concentration at threshold) σ ~10⁻¹⁶ cm² (= (0.1nm)²) -

Note: more precise relation between gain and carrier concentration will be discussed in future lectures

EE232 Lecture 2-15 Prof. Ming Wu

Field just to the right of Mirror 1 and propagating in +z direction:

$$
E^{+} = E_{inc}t_{1}(1 + r_{1}r_{2}e^{-jk2L} + r_{1}r_{2}r_{1}r_{2}e^{-jk4L} + (r_{1}r_{2}e^{-jk2L})^{3} + ...)
$$

$$
\sum_{k}^{\infty} ar^{k} = \frac{a}{1 - r}
$$

$$
E^{+} = E_{inc}t_{1} \frac{1}{1 - r_{1}r_{2}e^{-j2\theta}} \text{ where } \theta = kL
$$

 E^+ is the field traveling to the right (+z direction)

EE232 Lecture 2-16 Prof. Ming Wu

 η_0 : Impedance of medium outside cavity 1 : transmission of mirror 1 *t* 1 : reflectivity of mirror 1 *r* t_2 : transmission of mirror 2 $\eta_{\textit{cavity}}$: Impedance of medium inside cavity : Time-average Poynting vector (intensity) *S* 2 : reflectivity of mirror 2 *r*

$$
t_1^2 \eta_0 \eta_{cavity}^{-1} + r_1^2 = 1
$$

$$
t_2^2 \eta_0^{-1} \eta_{cavity} + r_2^2 = 1
$$

EE232 Lecture 2-17 Prof. Ming Wu

$$
\begin{split}\n&=\frac{(1-r_1^2)(1-r_2^2)}{\left|1-r_1r_2e^{-j2\theta}\right|^2} \\
&=\frac{(1-r_1^2)(1-r_2^2)}{(1-r_1r_2e^{j2\theta})(1-r_1r_2e^{-j2\theta})} \\
&=\frac{(1-r_1^2)(1-r_2^2)}{1-r_1r_2\left[e^{j2\theta}+e^{-j2\theta}\right]+(r_1r_2)^2} \\
&=\frac{(1-r_1^2)(1-r_2^2)}{1-2r_1r_2\left[\cos 2\theta\right]+(r_1r_2)^2} \\
&=\frac{(1-r_1^2)(1-r_2^2)}{1-2r_1r_2\left[1-2\sin^2\theta\right]+(r_1r_2)^2} \\
&=\frac{(1-r_1^2)(1-r_2^2)}{1-2r_1r_2+4r_1r_2\sin^2\theta+(r_1r_2)^2} \\
&T=\frac{(1-r_1^2)(1-r_2^2)}{(1-r_1r_2)^2+4r_1r_2\sin^2\theta+(r_1r_2)^2}\n\end{split}
$$

 η_0 : Impedance of medium outside cavity 1 : transmission of mirror 1 *t* 1 : reflectivity of mirror 1 *r* t_2 : transmission of mirror 2 $\eta_{\textit{cavity}}$: Impedance of medium inside cavity : Time-average Poynting vector (intensity) *S* 2 : reflectivity of mirror 2 *r*

$$
t_1^2 \eta_0 \eta_{cavity}^{-1} + r_1^2 = 1
$$

$$
t_2^2 \eta_0^{-1} \eta_{cavity} + r_2^2 = 1
$$

EE232 Lecture 2-18 Prof. Ming Wu

Resonance condition: $\sin^2 \theta = 0 \rightarrow kL = m\pi$ $\frac{n \times n_0}{2n}$ m = integer $L=\frac{m}{2}$ *n* λ_{a} =

e.g. with simple gain curve Threshold is achieved for one Fabry-Perot mode.