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Maxwell Wave Equation

In free space 

∇× (∇×E) = ∇(∇⋅E)−∇2E = −∇2E

∇2E+ µ0ε
∂2E
∂t2

= 0

In most cases, E field has sinusoidal temporal component:

  E ~ e− iωt

∇2E+ µ0εω
2E = 0

∇2 + µ0εω
2( )E = 0

D = εE
B = µH
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Transverse Electro-Magnetic (TEM) Wave

Solution in uniform media:
E = ŷE0e

iβz−iωt

β = µ0ε ⋅ω = ω
c / n

= nω
c
= n 2π

λ
= nk0

Once E field is solved, H field can be found by

∇× E = − ∂B
∂t

= iωB = iωµ0H

H = 1
iωµ0

∇× E

Ey  is the only non-zero component:

H = 1
iωµ0

− x̂
∂Ey
∂z

+ ẑ
∂Ey
∂x

⎛

⎝
⎜

⎞

⎠
⎟ = − x̂ iβ

iωµ0

E0e
iβz−iωt = − x̂ β

ωµ0

E0e
iβz−iωt
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Slab waveguide

ε1

ε2

ε2

2d

2d-

z

x

y

Slab waveguide consists of a slab of high-index material surrounded
by low-index material (𝜖! > 𝜖"). The waveguide is assumed to be
infinitely large in the y and z-directions.

We wish to find confined electromagnetic modes that propagate
in the +z direction and solve the source-free time-harmonic wave 
equation

∇2 +ω 2µε( )E = 0
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Slab waveguide

ε1

ε2

ε2

TEM wave does not exist in slab waveguide. Slab 
waveguides support Transverse Electric (TE) and 
Transverse Magnetic (TM) modes. First, let’s look 
at TE mode:

( , ) ( , ) ( ) ( )ˆ y y zyE x z E x z f x h® ==E
where we assume there is no dependence on y
given the slab is translationally invariant in the
y-direction. Along the z-direction we expect a 
traveling wave solution

21( ) z zi z i zh z C e C eb b-= +
Maxwell’s wave equation becomes

∇2 +ω 2µε( )Ey (x, z) = 0

Note this is exactly the same as the Schrodinger Eq. for QW:

−!2

2me
* ∇

2 +V (r)
⎡

⎣
⎢

⎤

⎦
⎥ψ env (r) = Eψ env (r)
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Slab waveguide

ε1

ε2

ε2

f (x) =
B1e

−α (|x|−d 2) x > d 2

B2 sin(βxx) −d 2 ≤ x ≤ d 2

⎧
⎨
⎪

⎩⎪

f (x) =
A1e

−α (|x|−d 2) x > d 2

A2 cos(βxx) −d 2 ≤ x ≤ d 2

⎧
⎨
⎪

⎩⎪

Similar to QW solution, along the x-direction, 
we expect a standing wave solution in the 
waveguide core and evanescent solution in the 
cladding.

Even solution

Odd solution
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Slab waveguide

Plug into 
wave equation

βx
2 + βz

2 =ω 2µ1ε1
−α 2 + βz

2 =ω 2µ2ε2

Apply boundary conditions at interface between core and cladding. 
Tangential component of electric and magnetic field are equal 
across interface.

Ey ,core x=±d
2

= Ey ,clad x=±d
2

Hz ,core x=±d
2

= Hz ,clad x=±d
2

1

2

(even)

(odd)

2

1

ta
2

nx x
dµa b b

µ
æ ö
ç ÷=
è ø

2

1

cot
2x x
dBµa b

µ
æ ö
ç ÷= -
è ø
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Slab waveguide

After rearranging3

βx
d
2

⎛
⎝⎜

⎞
⎠⎟

2

+ α d
2

⎛
⎝⎜

⎞
⎠⎟

2

=ω 2 µ1ε1 − µ2ε2( ) d2
⎛
⎝⎜

⎞
⎠⎟

2

α d
2

⎛
⎝⎜

⎞
⎠⎟
=
µ2

µ1

βx
d
2

⎛
⎝⎜

⎞
⎠⎟

tan βx
d
2

⎛
⎝⎜

⎞
⎠⎟

     (Even)

α d
2

⎛
⎝⎜

⎞
⎠⎟
= −

µ2

µ1

βx
d
2

⎛
⎝⎜

⎞
⎠⎟

cot Bx
d
2

⎛
⎝⎜

⎞
⎠⎟

   (Odd)
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Slab waveguide

2
p p

βx
d
2

α d
2

ω µ1ε1 − µ2ε2
d
2

0TE 1TE 2TE

Bound
solution

Solve graphically4

ω µ1ε1 − µ2ε2
d
2

=ω µε0 εr1 − εr2
d
2

= ω
c
n1
2 − n1

2 d
2

= k0 n1
2 − n1

2 d
2
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Cutoff condition

In the example on the previous slide we see that the TE1 mode would 
not have a solution and would be “cutoff” if the radius of the circle is 
less than 𝜋/2. The cutoff condition for each mode can be generalized 
as

k0

d
2
n1

2 − n1
2 = mπ

2
      m = 0,1,2,3... (Cutoff condition for TEm mode)

The waveguide will be single-mode if all modes except the fundamental
mode are cutoff.

k0

d
2
n1

2 − n1
2 < π

2
  (Single mode condition)
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Effective index

Effective index
0

z
effn

b
b

= 0
0

2pb
l

=

High-frequency limit

 R aad  ius  s w
a

¥ ®¥
\

®
®¥

βz
2 =ω 2µ1ε1 − βx

2

!ω 2µ1ε1
neff =

βz
β0

=
µ1ε1
µ0ε0

= n1    for µ1 = µ0

Low-frequency limit
  as 0

0
Radius 0 w
a

®
\ ®

®

βz
2 =ω 2µ2ε2 +α

2

!ω 2µ2ε2
neff =

βz
β0

=
µ2ε2
µ0ε0

= n2    for µ2 = µ0
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w
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ε1

ε2

ε2

Low ω

High ω

Effective index is a measure of how
confined the mode is to the core

Effective index
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Optical confinement factor

Γ = Power in core
Total power in mode

=

1
2

Re E×H*( ) ⋅ ẑ dx
core
∫

1
2

Re E×H*( ) ⋅ ẑ dx
total
∫

Weak guidance limit (mode is mostly within cladding)

( )
2

2 2
1 2

0

2 nd np
l

æ ö
ç ÷

ø
-G

è
!

For largest possible 𝛤 :
(1)Thick core
(2)Small wavelength
(3)Large index contrast
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TM modes
H = ŷH y (x, z)→ Hy (x, z) = f (x)h(z)

h(z) = C1e
− iβzz +C2e

iβzz

2

(| | 2)
1 2

2
( )

sin( ) 2

x d

x

B e x
f

d
x

B
d
x dx

a

b

--ì >
= í
î - £ £

2

(| | 2)
1 2

2
( )

cos( ) 2

x d

x

A e x
f

d
x

A
d
x dx

a

b

--ì >
= í
î - £ £

Even solution Odd solution

Along the z-direction we expect a traveling wave solution

Along the x-direction, we expect a standing wave solution in the 
waveguide core and evanescent solution in the cladding.

Eigenequations:
βx
d
2

⎛
⎝⎜

⎞
⎠⎟

2

+ α d
2

⎛
⎝⎜

⎞
⎠⎟

2

=ω 2 µ2ε2 − µ1ε1( ) d
2

⎛
⎝⎜

⎞
⎠⎟

2

α d
2

⎛
⎝⎜

⎞
⎠⎟
=
ε2
ε1

βx
d
2

⎛
⎝⎜

⎞
⎠⎟
tan βx

d
2

⎛
⎝⎜

⎞
⎠⎟

α d
2

⎛
⎝⎜

⎞
⎠⎟
= −
ε2
ε1

βx
d
2

⎛
⎝⎜

⎞
⎠⎟
cot Bx

d
2

⎛
⎝⎜

⎞
⎠⎟

Even solution

Odd solution
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Rectangular waveguides

Rectangular waveguides have dielectric contrast in two-directions

y

ε3

x ε1

ε2

Rectangular waveguides do not support pure TE or TM modes!
Instead they support hybrid modes.
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Rectangular waveguides

Intensity patterns

HE00  or EH00 HE01  or EH01 HE10  or EH10

y
x

Hybrid modes
HEpq Hx ,Ey are the dominant components (quasi-TE)

EHpq Ex ,Hy are the dominant components (quasi-TM)

number of nodes in the x-directionp®
number of nodes in the y-directionq®
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Effective index method

We estimate the propagation constant of the HE00 mode with the 
effective index method. We essentially break the 2D problem into a 
1D slab waveguide problem.

To simplify this problem we assume that the waveguide is completely
surrounded by the same index. More sophisticated examples are found
in the book.

y

ε2

x ε1

w

d
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Step 1

y

ε2

x ε1

ε1

ε2

ε2

Solve for the TE mode of the slab waveguide with core of 
permittivity 𝜖! and cladding with permittivity 𝜖"

Calculate the effective index 𝑛#$$,!
and modal distribution 𝐹(𝑥)

w

d

d
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Step 2

neff ,1
2 ε2ε2

Solve for the TM mode slab waveguide with core of permittivity 𝑛#$$"

and cladding with permittivity 𝜖". Calculate the propagation constant 𝛽&
and modal distribution G(𝑦). 
The overall propagation constant of the 2D waveguide is then 𝛽&
and the modal distribution of the 2D waveguide is given by

y
ε2

x ε1ε2

w

Ey (x, y) = F(x)G( y)


