

EE 232 Lightwave Devices Lecture 8: Integrated Photonic Components (1)

Instructor: Ming C. Wu

University of California, Berkeley Electrical Engineering and Computer Sciences Dept.

Reading: Chuang, Chap 8

EE232 Lecture 8-1 Acknowledgment: some lecture materials are provided by Seth Fortuna Frof. Ming Wu

x

Grating coupler

- Grating couplers are used to couple light in and out of waveguides, for example
	- Couple light to fiber

Ray Optics Picture

• Radiation angle determined by constructive interference between consecutive grating teeth

 $\beta_z a - k_1 b = 2\pi m$ $m = 0, \pm 1, \pm 2$... $\frac{2\pi}{\lambda} n_{eff} a - \frac{2\pi}{\lambda} n_1 b = 2\pi m$ $n_{eff}a - n_1 a \sin(\theta) = m\lambda$ $sin(\theta) =$ $n_{eff}a - m\lambda$ $\overline{n_1 a}$ $\sin(\theta) =$ $n_{eff} - \frac{m\lambda}{a}$ Phase of Ray 2 Phase of Ray 1

 $\overline{n_1}$

Phase Matching Condition for Free Space **Grating**

- Grating changes horizontal wave vector (k) by $m \frac{2\pi}{\Lambda}$ Λ
	- Spatial Fourier components of the grating
- Momentum (wave vector) is conserved along the grating interface

Phase Matching Condition for Grating Coupler in Waveguide

The propagation constant along the z direction is conserved. This is called the "phase matching condition":

$$
k_0 n_1 \sin(\theta) + m \frac{2\pi}{a} = \beta_z = n_{\text{eff}} k_0
$$

$$
\sin(\theta) = \frac{n_{\text{eff}} + m\frac{\lambda}{a}}{n_1}
$$

In most applications, we only want the top emission. The bottom emission can be suppressed through multilayer interference.

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 1, JANUARY 2007

Design example

• Design the grating period such that light is diffracted out at a 10° angle for 1st order diffraction

Directional Coupler

$$
E(x, y, z) = a(z)E^{(a)}(x, y) + b(z)E^{(b)}(x, y)
$$

Coupled Mode Theory:

$$
\begin{cases}\n\frac{da(z)}{dz} = i\beta_a a(z) + iK_{ab}b(z) \\
\frac{db(z)}{dz} = iK_{ba}a(z) + i\beta_b b(z)\n\end{cases}
$$

 $K_{ab} = K_{ba}^*$ for co-directional coupling $K_{ab} = -K_{ba}^*$ for counter-directional coupling

- Light can couple from one waveguide to an adjacent waveguide in close proximity
	- Similar to electron tunneling through a barrier
- Optical modes should overlap
- Wave vector needs to match
- The coupling can be described by "coupled mode theory"

Solution for Coupled Mode Equations

 $e^{i\beta z}$

$$
\frac{d}{dz}\begin{bmatrix} a \\ b \end{bmatrix} = i\mathbf{M} \begin{bmatrix} a \\ b \end{bmatrix}
$$

\n
$$
\mathbf{M} = \begin{bmatrix} \beta_a & K_{ab} \\ K_{ba} & \beta_b \end{bmatrix}
$$

\nSolution has the form:
$$
\begin{bmatrix} a(z) \\ b(z) \end{bmatrix} = \begin{bmatrix} A \\ B \end{bmatrix}
$$

\n
$$
\begin{bmatrix} \beta_a - \beta & K_{ab} \\ K_{ba} & \beta_b - \beta \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = 0
$$

\nDeterminant = 0:
\n
$$
(\beta_a - \beta)(\beta_b - \beta) - K_{ab}K_{ba} = 0
$$

Solution: β $=$ $\beta_{_a} + \beta_{_b}$ 2 ± *q* $q = \sqrt{\Delta^2 + K_{ab}K_{ba}}$ $\Delta =$ $\beta_{\scriptscriptstyle a}$ $\beta_{\scriptscriptstyle b}$ 2

Special case: identical waveguides

$$
\beta_a = \beta_b = \beta_0
$$

$$
\beta = \beta_0 \pm \sqrt{K_{ab}K_{ba}} = \beta_{\pm}
$$

Eigen modes of the coupled waveguides:

In-phase mode: β_{\perp}

Out-of-phase mode: β

Special case: identical waveguides

Eigen vectors:

For
$$
\beta_+ : \mathbf{v}_1 = \begin{bmatrix} K_{ab} \\ q \end{bmatrix}
$$

\nFor $\beta_- : \mathbf{v}_2 = \begin{bmatrix} K_{ab} \\ -q \end{bmatrix}$
\nEigenmatrix: $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 : \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} K_{ab} & K_{ab} \\ q & -q \end{bmatrix}$
\n $\begin{bmatrix} a(z) \\ b(z) \end{bmatrix} = \mathbf{V} \begin{bmatrix} e^{i\beta_+ z} & 0 \\ 0 & e^{i\beta_- z} \end{bmatrix} \mathbf{V}^{-1} \begin{bmatrix} a(0) \\ b(0) \end{bmatrix}$

Special case: identical waveguides (cont)

Input from top waveguide: $a(0) = 1$ and $b(0) = 0$ $a(z) = cos(Kz) \cdot e^{i\beta z} \implies |a(z)|^2 = cos^2(Kz)$ $b(z) = i \sin(Kz) \cdot e^{i\beta z} \implies |b(z)|^2 = \sin^2(Kz)$ Here $\beta = \beta_a = \beta_b$ and $K = K_{ab} = K_{ba}$

General Solution: Non-Identical Waveguides

$$
\beta_a = \beta_a(\omega) ; \qquad \beta_b = \beta_b(\omega)
$$

Eigen vectors:

For β_+ : $\mathbf{v}_1 =$ *K ab q* − Δ L \lfloor ⎢ $\mathsf I$ $\overline{}$ ⎦ $\left| \right|$ For β_{-} : **v**₂ = *K ab* −*q* − Δ \vert \lfloor ⎢ $\mathsf I$ $\overline{}$ \rfloor $\frac{1}{2}$ \vert *a*(*z*) *b*(*z*) ⎡ \lfloor ⎢ $\overline{}$ $\overline{}$ $\overline{}$ ⎥ $\overline{}$ $=$ **V** $e^{i\beta_{+}z}$ 0 0 $e^{i\beta_z z}$ \lfloor \lfloor ⎢ $\mathsf I$ $\overline{}$ \rfloor $\frac{1}{2}$ \vert \mathbf{V}^{-1} *a*(0) *b*(0) \mathbf{r} $\overline{\mathsf{L}}$ ⎢ ⎢ $\overline{}$ $\overline{}$ ⎥ $\overline{}$ $=e^{i\phi z}$ $\cos qz + i$ Δ *q* sin*qz i K ab q* sin*qz i* K_{ba} *q* $\sin qz$ $\cos qz - i$ Δ *q* sin*qz* $\mathsf L$ \lfloor ⎢ ⎢ ⎢ ⎢ ⎢ $\overline{}$ ⎦ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ \vert *a*(0) *b*(0) \lfloor \lfloor ⎢ $\mathsf I$ $\overline{}$ $\overline{\mathsf{I}}$ $\begin{array}{c} \hline \end{array}$ \vert

General Solution: Non-Identical Waveguides

Input from top waveguide: $a(0) = 1$ and $b(0) = 0$ $K_{ba}\Big|^2$ $b(z)\big|^{2}$ $\sin^2(qz)$ = *q* 2 2 *K ab Kba* Maximum power transfer: $\frac{1}{2}$ < 1 = *q* $\Delta^2 + K_{ab}$ π : Beat Length*q* $|a(0)|^2 = 1$ $|a(z)|^2$ $\sum_{\alpha}^{\overline{0}} |K_{ba} / \Psi|^2$ $|b(z)|^2$

EE232 Lecture 8-14 **EE232** Lecture 8-14 **EE232** Lecture 8-14 **Prof.** Ming Wu

 $|b(0)|^2 = 0$

 \overline{z}

 $\frac{2\pi}{\Psi}$

Dispersion Curves for Directional Couplers

Application: Optical Switches

Input from top waveguide: $a(0) = 1$ and $b(0) = 0$ Output from waveguide *b* :

$$
P_b = |b(l)|^2 = \frac{K^2}{\Delta^2 + K^2} \sin^2(ql)
$$

\n"Bar" state: $ql = n\pi$, $n = 1, 2, 3...$, or $(\Delta l)^2 + (KI)^2 = (n\pi)^2$
\n"Cross" state: $ql = (n + \frac{1}{2})\pi$, $n = 1, 2, 3...$
\n
$$
\frac{|\mathbf{a}(0)|^2}{\Delta}
$$

\

Application: Optical Switches

by electro-optic or thermo-optic effect

EE232 Lecture 8-17 Prof. Ming Wu

Improved Switch:

