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We neglect current spreading in the lateral direction and assume quasi-Fermi level
is constant throughout active region.
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Carrier recombination

Leaky Bathtub analogy _>[

Coldren et al. Diode Lasers

At steady state, Current 0 and Photonic Integrated Circuits.
we must continuously leakage - N
pump the active region to de

maintain a certain carrier 4

density

R = RSRH + Rsp + %Qm T RAuger

/ NN

Shockley-Reed-  Spontaneous Stimulated Auger
Hall recombination emission  emission recombination
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Spontaneous emission power

n.izRSRH+RSp+R

i q d Auger
R J
Let n, = P r R = Rsp =11, —d
SRH + sp + Auger q

Spontaneous emission power (P, )

= (Photon energy) x (Emission rate) x (Active region volume)

P =howR V
sp sp act
=hoVn nJ/qd
g he
T, For constant internal quantum
efficiency (IQE), there is a linear
_ h_a)[ relationship between power and
771 E .
v %k g current. However, in general,

IQE does change with current
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ABC approximation

Auger
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ABC approximation

SRH Sp. Em. Auger
0.8} -
0.6 -
=
QO 04}t :
[
02F -
O B 1 1 L 1 1 ]
10° 10" 10" 10° 10°
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Note: At high current density, other loss mechanisms beside Auger may become
important. See for example, controversy surrounding “droop” in GaN LED efficiency at

high current.
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Most emitted light will become trapped
P-type in the high-index semiconductor.
Only light with angle smaller than

VA;% critical angle can escape.
9(,\ \/ n 1

sinf, =—- —> 0 ~—

n n
Light extraction efficiency Externally collected power
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External quantum

1 ( [ 1 D 1 efficiency
no=s| 1=\ 1=>= ||=7=
2 2n 4n Light extraction efficiency can be
n =2% forn~3.5 increased by roughening the surface or
adding nanostructures
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Semiconductor laser at steady state

contact insulator
active {d f ' e
N-type N-type ‘
“ - L > _ e .
Facet contact Facet Edge-emitting ridge laser
mirror mirror
S = photon density in lasing mode
n = carrier density in active region V.., =cavity volume
v, = group velocity V ., =active region volume
p,, = fraction of sp. em. into lasing mode - V. (Area)d . (Area)d
=~ 44 — —> =
7, = photon lifetime V. v cav r
g = gain
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Rate equations for photons and carriers

Rate equation for carriers in active region

dn J

_:Ui__R RS Rszm uger

dt qd/ SRH ‘ t\A g\
Shockley-Reed-  Spontaneous Stimulated Auger

Hall recombination emission emission recombination

Rate equation for photons in cavity

dS S
—=——+Ip R +IR,,
TN
Rate of photons Sp. em. rate Stimulated
leaving cavity into cavity mode emission
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Simplified Steady State Analysis

Ignore spontaneous emission: R =0

ﬁ=—£+1“ng=O
dt T, &
Above threshold, S >0
|
Fvgg:T—
p
1 o+ta
*“Tve T o0
g P

Gain "clamped" at threshold gain when above threshold

— Carrier concentration is also clamped at threshold value
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Simplified Steady State Analysis

dn _ J

% =1. ” Ry —Tv,85-R, ., =0

Auger

(1) Below threshold: S=0 (2) Above threshold:

J:%QR +R

) Gain, and therefore carrier concentration, are
SRH Auger
1,

clamped at threshold values:

1 J
S = ~—R., —R
FVg gth (nz q d SRH Augerj

_ 1 n (J o th )
Fvg g, qd

S

P, = (ho)(v,@,)S)V,,)=n, ( o ) “21,)
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Simplified Analysis: Steady State

N=N,
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Full Analysis

Rate equation for carriers in active region

dn J
E = 771' q_d o RSRH o Rsp o Rstim o RAuger
qd
(steady state) |J = F(RSRH +R +R, +R Auger)

Rate equation for photons in cavity

dS S
—=—-——+Ip R +IR,,
dt T,
o TBR,
(steady state) 1
—=1Iv.g
TP
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Below threshold — Spontaneous emission

From before, R =1, TLJ/Qd

S = (F,BSPRSP )/(l/z'p —Fvgg)

=~ TpFﬂSpRSp
— Tprﬂspninsp (J/qd)
1 |
Recall, I'g)=—=¢a,+a, > Ty =
VT, v, (o, +a;)

Fﬂspnspnz’ J This is the number of spontaneously
v (. +a,) gd  emitted photons in the cavity mode
g m l

Then, S =
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Below threshold — Spontaneous emission

Spontaneous emission power (P, )
= (Photon energy) x (Rate of loss from mirror) x (Photon density) x (Cavity volume)

P, =(ho)v,a,)XS)V,,)

cav

Ignn J .

=hov o
g mvg(am_i_ai) qd cav
Note:
e Veer _ (Area)d SV = (Area)d
VCCIV I/cav F
o hao
P = . o Ji
P nsPn’[am +ai] q P

This is the spontaneous emission power into the cavity mode
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At threshold and above threshold

At threshold

Laser threshold condition is reached when gain precisely balances cavity loss.
Stimulated emission will still be small with respect to spontaneous emission.

Jth

771' q_d = RSRH (nth) + Rsp (nth) + RAuger (nth)

Above threshold

Above threshold and under steady state operation, the gain must “clamp”

at the threshold gain. If this were note the case, the fields in the cavity would
grow without bound (thus not achieving steady state). This also implies that
the Fermi-level and current density must clamp at the threshold current density.

g:gth f0r1>]th

n=n, forl>1I,

EE232 Lecture 20-16 Prof. Ming Wu



'S, R
Recall. § = 'BSP P J/qd —» Coldren et al. Diode Lasers
’ 1/2_ —Tv and Photonic Integrated Circuits.
p gg Current
leakage
Now, let’s derive a stimulated R,

emission lifetime.

n 1 (n
Rstim = = vg gS — z-stim = (_j
Tstim Vg g

” R

S ) | ) |
R,, j K Rsp

We see that there is a negative feedback loop that does not allow the gain to
increase beyond the gain threshold. As current is increased and gain approaches
the threshold gain, the photon density increases dramatically thus significantly
reducing the stimulated emission lifetime. Any additional current gets immediately
“used up” by stimulated emission not allowing the carrier density or gain to increase.

The laser at threshold is similar to a filled bathtub. Any additional water spills over the
side. Likewise any additional injected carriers will “spill out” as stimulated emission
and will not increase the carrier density.
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Above thres

From the carrier density rate equation

hold

J
771' q_d = RSRH (nth) + Rsp (nth) + RAuger (nth) + Rstim
J J
1; q_d =1 q_Z, + vggthS
771'(']_'] )
qd th - vggthS

Plug into the photon density rate equation

S rp,R

Sp
T
p

SZFTP ni(‘]_']th)
qd

+ FvggthS = FvggthS

Py = (h)(v,@, XS),,) =, ( -

o ha
m ] (I-1,)
;) 4

+ O
m
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Above threshold (L-I curve)

Above threshold, emitted power is dominated by stimulated emission.
Spontaneous emission power clamps at the threshold power.

Power

Spontaneous emission
clamped above threshold
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log(Power)

log(Current)
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Above threshold (L-I curve)
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Differential quantum efficiency

We define the external differential quantum efficiency of the laser as

g dP

e o dl

This is the probability of externally collecting a stimulated photon for an injected
electron-hole pair.

o In(1/ R
776=77,-£ = ]=77 L7R)

o +a, ) ' al+In(l/R)

By plotting the inverse of the external
differential quantum efficiency as a function
of cavity length we can determine cavity loss
and injection efficiency from the slope.

| a. L+l

776 } 771' ln(l/R) 771'

Cavity length (L)
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Summary

nght emitting diode

act

I V q (RSRH +R +RAuger) Psp :leEnc 7[

I

Semiconductor laser

Below threshold: r=v, = (Ropyy + R, + R0,

I

P :77519771( & jha)ﬁ J (Spontaneous emission

” a +a, ) g " power into lasing mode)

act

Above threshold: [=V 9 [(RSRH +R +RAuger) +Rst,-m}

n:nth
I

a ho
Pstim:nz‘( = j g (I_[th)

a, +a,

(Stimulated emission power into lasing mode)
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