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Light emitting diode at steady state
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We neglect current spreading in the lateral direction and assume quasi-Fermi level 
is constant throughout active region. 

Rate equation for active region
(ignoring generation term)

d is active
region thickness

injection
efficiency
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Carrier recombination
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Leaky Bathtub analogy

At steady state,
we must continuously
pump the active region to 
maintain a certain carrier 
density
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Shockley-Reed-
Hall recombination

Spontaneous
emission

Stimulated
emission

Auger
recombination

Coldren et al. Diode Lasers 
and Photonic Integrated Circuits.
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Spontaneous emission power
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For constant internal quantum
efficiency (IQE), there is a linear
relationship between power and
current. However, in general,
IQE does change with current
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ABC approximation
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ABC approximation
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SRH Sp. Em. AugerEx. InGaAs LED

Note: At high current density, other loss mechanisms beside Auger may become 
important. See for example, controversy surrounding “droop” in GaN LED efficiency at 
high current.
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LED external quantum efficiency
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ηc ≈ 2%  for n ∼ 3.5

Most emitted light will become trapped
in the high-index semiconductor.
Only light with angle smaller than
critical angle can escape.
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Light extraction efficiency Externally collected power

External quantum
efficiency

Light extraction efficiency can be 
increased by roughening the surface or 
adding nanostructures
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Semiconductor laser at steady state
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photon density in lasing modeS º
carrier density in active regionn º
group velocitygv º

fraction of sp. em. into lasing modespb º

photon lifetimept º
gaing º

cavity volumecavV º

active region volumeactV º
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Rate equations for photons and carriers
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Rate of photons
leaving cavity

Sp. em. rate
into cavity mode

Stimulated
emission
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Shockley-Reed-
Hall recombination
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Stimulated
emission

Auger
recombination

Rate equation for carriers in active region

Rate equation for photons in cavity
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Simplified Steady State Analysis

Ignore spontaneous emission: Rsp ≈ 0

dS
dt

= − S
τ p

+ ΓvggS = 0

Above threshold, S > 0

Γvgg =
1
τ p

g = 1
Γvgτ p

=
α i +αm

Γ
= gth

Gain "clamped" at threshold gain when above threshold
⇒Carrier concentration is also clamped at threshold value
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Simplified Steady State Analysis

(2) Above threshold:
Gain, and therefore carrier concentration, are
clamped at threshold values:
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(1) Below threshold:  S = 0

J = qd
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RSRH + RAuger( )
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dt
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J
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Simplified Analysis: Steady State
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Full Analysis
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Rate equation for carriers in active region

Rate equation for photons in cavity

J = qd
ηi

RSRH + Rsp + Rstim + RAuger( )(steady state)

S =
ΓβspRsp
1
τ p

− Γvgg
(steady state)

Note, recall: Rstim = vggS
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Below threshold – Spontaneous emission
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Rsp =ηspηi J qdFrom before, 

This is the number of spontaneously
emitted photons in the cavity modeThen, 
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Spontaneous emission power (P
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)

      (Cavity vo ume)
sp

´ ´ ´

Psp = (!ω )(vgαm )(S)(Vcav )

= !ωvgαm

Γβspηspηi
vg (αm +α i )

J
qd
Vcav

Note:
(Area) (Area)act

cav
cav cav

V d dV
V V

G == ®
G

!

This is the spontaneous emission power into the cavity mode
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Below threshold – Spontaneous emission
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At threshold and above threshold
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Laser threshold condition is reached when gain precisely balances cavity loss.
Stimulated emission will still be small with respect to spontaneous emission.

At threshold

Above threshold and under steady state operation, the gain must “clamp” 
at the threshold gain. If this were note the case, the fields in the cavity would
grow without bound (thus not achieving steady state). This also implies that
the Fermi-level and current density must clamp at the threshold current density.
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Gain and carrier density clamping
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Now, let’s derive a stimulated 
emission lifetime.
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We see that there is a negative feedback loop that does not allow the gain to 
increase beyond the gain threshold. As current is increased and gain approaches 
the threshold gain, the photon density increases dramatically thus significantly 
reducing the stimulated emission lifetime. Any additional current gets immediately 
“used up” by stimulated emission not allowing the carrier density or gain to increase.

The laser at threshold is similar to a filled bathtub. Any additional water spills over the 
side. Likewise any additional injected carriers will “spill out” as stimulated emission 
and will not increase the carrier density.

spR

J qd

stimR

Coldren et al. Diode Lasers 
and Photonic Integrated Circuits.



EE232 Lecture 20-18 Prof. Ming Wu

Above threshold
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From the carrier density rate equation

Plug into the photon density rate equation
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Above threshold (L-I curve)
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Above threshold, emitted power is dominated by stimulated emission.
Spontaneous emission power clamps at the threshold power.
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Above threshold (L-I curve)
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Plotted on log-log scale the L-I curve has an “S”-like shape.
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Above threshold (L-I curve)

Coldren et al. Diode Lasers and Photonic Integrated Circuits.
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Differential quantum efficiency
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We define the external differential quantum efficiency of the laser as 

This is the probability of externally collecting a stimulated photon for an injected
electron-hole pair. 
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By plotting the inverse of the external 
differential quantum efficiency as a function 
of cavity length we can determine cavity loss 
and injection efficiency from the slope.
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Summary

Light emitting diode
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Below threshold:

Above threshold:

(Spontaneous emission
power into lasing mode)
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(Stimulated emission power into lasing mode)


