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Current and photon confinement
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Current and photon confinement
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‘Gain in quantum well
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Peak gain occurs at the bandedge

,F%: ﬁ;@ g, = &u(f[ho = E}1- f[ho=E}\])

(
// Assuming only subband is filled in
conduction and valence bands we can

write an approximate expression for the

£ \ ho peak gain
hl AF

Recall,
n=n,In(1+exp[(F.—E, —E,)/kT) @}@T @@_ kT
p=nIn(l+exp[(E, —F,)/kT]) “ xh’L, Y mh’L,
The Fermi functions can be written in terms of the carrier density A%_
ftho=Eg)= 1 l—expnfn) 1T €
1+exp[(Eg1+ E,~F.)/ kT | z
f(ho=Ej) = —exp(-p/n,) &

1+exp[(Eh1 —Fv)/kT} -

Then, ( g, = &u[1-exp(=n/n,)—exp(-p/n,)]
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Gain in quantum well

g, = &u|l—exp(=n/n)—exp(-p/n,)]

The plot of peak gain vs. carrier
concentration (red line) is approx. linear
on a semi-log plot, therefore a simpler
approximate expression is often used
(dashed gray curve).

g, =g, In[n/n]

n/nc

As discussed previously, the current density can be written in terms of a
polynomial of the carrier density (e.g. J « n? if spontaneous emission
dominates). Therefore, we can write a similar approximate

expression for peak gain in terms of carrier density.

g,=gIn[J/J;] | Note: gy are not the same in both expressions

AR
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Quantum well laser - threshold gain

J, g .- quantum well threshold gain
g, =&In (J_o J, : threshold quantum well current density
1 1 n,: number of quantum wells in active region
fl_wrwi? w i T 7 In RR J ", :fraction of mode in quantum well
/r 172
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Threshold current and gain in active region
with multiple quantum wells
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w: active region width

L : active region length
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.. )] Active region optimization

Optimize cavity length (L) or a fixed number of quantum wells

ol

—”’zO—)Loptzl In !
2n g RR,

Optimize number of quantum wells (n,,) for a fixed cavity length
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1

ol, 1 1 1
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dn, " T, g, 2L RR,
_ 1 1 1
For a general cavity, —— =| a;, +—In
TV 2L RR,
p g
=0T,
_— 1 o,
therefore, |7, ngOVg 0
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Additional details on the “ABC”
approximation

Recombination rate in LED or Laser at or below threshold:

R=Rgu, +R,+R

Auger

= ijlriz + §_7_1_f +Cn’  “ABC” approximation
The ABC approximation is widely used to estimate recombination
rates in LEDs and lasers (at or below threshold). Although strictly
speaking, it is valid only when Boltzmann statistics are valid so some

care needs to be applied when using the approximation.

We have already proved that the spontaneous emission rate has an
n2 dependence (when Boltzmann statistics apply). See the previous
lecture on spontaneous emission.

Let’s look at the Shockley-Reed-Hall and Auger rates.
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Shockley-Reed-Hall recombination

The derivation of the SRH rate is found
in many basic semiconductor textbooks.

Yy VY
N n,on+ p,0n+on ® £
i C;:l(no—i_nds+5n)+cn_l(p0+pds+§n) ‘
H T |

n=n,+6n  n,and P, are the electron and B S
P=p,+6p hole concentrations when the

Fermi level is at the defect state
0,=9, energy O E,
Cn = O-n n,thNds ] C t t

apture rates

Cp = Gpvp’thNdS P
o, We see that in general we cannot write
o, Capture cross-sections R = An
v, ] _ But, we can do so if we restrict
. Thermal velocity our analysis to a “low-injection” or

“high-injection” regime.
N, : defect density
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impurities introduced during growth. Let’s assume our active region is
unintentionally doped p-type.

P, > 0n Low-injection regime

B n,on+ p,on+on’
C;(no +nds +§n)+Cn_l(p0 +pds +5l’l)

Repy =Co =A4,n

0,> p, High-injection regime

~ C, Cp
Ry = C + Cp 0, = Ahighn

We see that we can write R, = An so long we stay in one of the two regimes.
If the electron capture is the rate-limiting step (for p-type material), then the A
coefficient will be identical in both regimes.
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Auger recombination

Electron recombines with hole and gives up excess energy to another carrier
instead of releasing a photon. Several different Auger processes are possible
(as shown below). Often there is a material-dependent dominant process.

, CBand , CBand , CBand
4 \\ /
@\
| 3 3
E, > E, o1 E,
/" 3 1 N
<— 1> 4
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Lty

EE232 Lecture 21-16 Prof. Ming Wu



Auger recombination

, CBand
4
2
]
E.a'
/ 3
HH Band

The CCCH Auger rate is given by
RAuger - COfle (1 - ﬂ )(1 - ﬁ)

F-F F —-F E —-F
=C Ze c 2 3 v (1
o] S o g o B o
_C n’p exp E,-E, \
" (kT)’NCN, kT Very likely that State 4 is empty
Ry =C*p @3 for n = p since it is well beyond the bandedge
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Auger recombination

C
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Energy and momentum conservation
needs to be simultaneously conserved.
This sets a threshold value for E; which
we call E1. Materials with small E1 will
have large Auger rates since

R, cexp(=E,/kT)

Auger
E+is related to the curvature of the bands
through

2m +m,
E, =——— h Eg =aEg
m,+m,

the value of a is approximately unity for [lI-V
semiconductors therefore,

R, e CEXp(—E, [ kT')

Auger

Auger recombination is higher in
low bandgap materials.
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